“It’s Life, GM, But Not As We Know It!”

Logo

Mobile Suit Gundam: High Frontier

Life In The Universal Century


“It’s Life, GM, But Not As We Know It!”

OpenType

The O’Neill “Island Three” habitat is a gargantuan cylinder with hemispherical end caps, 32 kilometers (20 miles) long and 6.4 kilometers (four miles) in diameter, with a habitable surface area of 325 square kilometers (125½ square miles) or 32,500 hectares (80,310 acres) supporting a population in the tens of millions.

(In the Gundam canon, the population is generally given as three to ten million.) The cylinder is rotated on its long axis at ½ RPM (one revolution every two minutes) to simulate Terrestrial gravity for the people living inside. (½ RPM is not very impressive visually, so the apparent rate of rotation is exaggerated to about two RPM in the animation.)

Closer Look

Orbiting with one end facing the sun, it’s divided lengthwise into six alternating “ground” and “sky” panels, so only half of the inner surface is actually available for habitation.

Three mirrors project outward at a 45° angle from the end facing away from the Sun and reflect sunlight through the translucent “sky” panels to the landscaped “ground” panels opposite them.

Because the end caps of the cylinders are domed, each of the “ground” panels has what, from an inhabitant’s point of view, appears to be a 3.2-kilometer (two-mile) high “mountain” at either end.

Outside Looking In

The simulated “gravity” resulting from the rotation varies from one “G” at the base of the mountain to zero-G at the apex. The drop-off is linear—at the 1.6-kilometer (one-mile) level, midway (45°) up the mountainside, the pseudo-gravity is 50% (½ G). You can calculate the acceleration that produces this pseudo-gravity using the formula F=rω²/g, where F is the resulting acceleration, r is the distance from the central axis, ω is the angular velocity (a constant equal to times the number of rotations per second) and g is the acceleration due to gravity experienced on Earth (9.8 m/s² or 32 ft/s²).

This is equivalent to the more familiar F=mV²/r formula, only substituting V=rω.

(On 7 November 2002, Ian Woollard wrote me to correct my math regarding the drop-off rate.)

The mountains and the “valleys” between them are landscaped to an idyllic green splendor, supporting six densely populated urban and suburban civic and residential centers. The underlying cylinder hull is a meter (3 feet, 3 inches) of titanium-reinforced “mooncrete” or lunar concrete, a mineral aggregate of anorthosite, ilmenite, and “KREEP,” an acronym for potassium (K), rare earth elements (REE) and phosphorus (P).

Ground Panel

The three “ground” panels are covered with an average 5-meter (16.4-foot) layering of landscaped topsoil.

The three “sky” panels are composed of quartz glass, vitreous silica prepared from pure quartz and noted for its transparency to ultraviolet radiation. Each “sky” panel is 3.2 kilometers (two miles) wide and 25.6 kilometers (16 miles) long, divided into eight square “windows” 3.2 kilometers on a side. Bridges connecting the “ground” panels span the “sky” panel at the junctions of these windows, seven bridges across each of the three “sky” panels, for a total of 21 “sky” bridges in all.

The basic element or building block of the “sky” panels is a cubical quartz glass prism 3.2 meters (10.4 feet) on a side, massing about 80 tonnes (90 tons). The prisms are mounted in a five-by-five titanium grid to form a square “frame” 16 meters (52 feet) on a side and three meters deep, with 25 prisms per frame.

Sky Panel

These frames are mounted, four ply, in a five-by-five array “pane” 80 meters (260 feet) on a side and 12.8 meters (41.6 feet) deep, with 100 frames (2,500 prisms) per pane.

The panes are mounted in a five-by-five “sash” 400 meters (1,312 feet) on a side, with 25 panes (2,500 frames or 62,500 prisms) per sash. Each of the eight windows is thus an eight-by-eight array of 64 sashes, containing 1,600 panes (160,000 frames or four million prisms), so each “sky” panel contains 512 sashes (12,800 panes or 1,280,000 frames or 32 million prisms).

Since there are three such panels, each colony has 24 windows (1,536 sashes or 38,400 panes or 3,840,000 frames or 96 million prisms) containing a combined mass of about 7,680 megatonnes (8,640 megatons) of quartz glass.

Docking ports called “bay blocks” at either end of the colony’s central axis rotate in the opposite direction, maintaining a “stationary” position around which the colony proper appears to rotate. Laser beacons line a five-kilometer approach path for incoming spacecraft. A solar power station (SPS) generating a gigawatt per hour is built into the port docking port.

Each docking port contains six docking bays, arranged around the axis like the chambers of a revolver. Each docking bay has six docks, arranged in a similar fashion around the centerline of the bay. Each dock can accommodate three 300-meter ships, for a total capacity of 108 ships. Zero-G industrial blocks are strung out along the axis between the docking ports and the end caps, standard-G industrial blocks are mounted on the exterior of the colony cylinder. All of the agriculture and industry is external to the colony proper, so all of the space within the colony cylinder is actual living space for the colonists, pure and unpolluted.

Docking Port

Since the spacecraft bay blocks are necessarily at the center of the end caps, in line with the axis of rotation, the “mountainsides” on the interiors of these end caps are heavily urbanized. Six major cities are built at the bases of these mountains, three at either end, thinning out as they spread down the “foothills” and into the “valleys” toward the equator. (In a reversal of the mundane trend, it is the “hillside” which is the less desirable, “poor” side of town) The central zone at the equator is kept in a state of artificial “wilderness” dotted with a few small rural villages and highly prized resorts. Each colony thus contains six separate urban civic centers, six suburban residential zones and three rural recreational areas, each with its own distinct identity, as a safeguard against inbreeding and cultural stagnation.

Each of the three valleys within the colony is an elongated rectangle 32 kilometers (20 miles) long and 3.2 kilometers (two miles) wide, yielding a total area of 105 square kilometers (40 square miles). The six cities and their associated suburbs cover an area of 41.4 square kilometers (16 square miles) each. The three rural areas cover an area of 20.7 square kilometers (eight square miles) each, which must be shared evenly between the two urban/suburban centers at either end.

Travel from the docking bay and industrial blocks at the axis “down” to the residential areas in the valleys or “up” to the agricultural block ring is via elevator, usually depicted as a set of three vertical tubes spaced 120° apart. If so, riding them would be murder, due to the same Coriolis effect that produces the artificial “gravity” at the hull. As the elevator “rises” from the hull to the axis, the passengers are going to be pushed downspin at the same rate as they are inward, with the result that the “floor” is going to feel as if it’s been upended at a 45° angle.

The same applies going “down” from the axis to the hull, except that the push is going to be upspin. A body dropped from the axis to the hull would fall in a Nautilus-shell helical spiral, appearing to travel in an upspin arc around the axis until it finally impacted, not on the ground panel immediately below, but the ground panel upspin from there. The fall would take about five minutes 20 seconds and make one and one-third revolutions, with a terminal impact of 644 KPH (400 MPH).

Presuming that the elevator accelerates and decelerates at the same rate, minus the sudden sharp stop going from axis to hull, travel time would be the same as it is for a free fall, with the Coriolis effect converted into lateral forces on the vertically restricted passengers. That being the case, the best design for the elevator would be an upspin spiral for the cars going from axis to hull and a downspin spiral for the cars going from hull to axis. The cars would not run “vertically” (i.e., perpendicular to the “ground”), but drive “parallel” to the hull the entire trip.

Population of a colony is, as noted above, somewhat problematic. O’Neill was very detailed in his descriptions of the Island One and Island Two configurations, which he was trying to persuade the U.S. Congress to try and build, but much less so for Island Three, which he held out as the pot of gold at the end of the rainbow. In most instances, he merely referred to “populations in the millions” but on at least one occasion he stated: “Island Three … could support quite easily a population of ten million people.”

Skylight

Most of the Gundam references cite populations of three to ten million per colony, but the question is confused by the fact that there are two types of colonies: the “open type” colonies using the O’Neill design and the more efficient “closed type” colonies with twice the habitable area. It would not be unreasonable to assume that doubling the habitable area would also double the population capacity. (In reality, it’s not that easy, as doubling the population quadruples the strain on the environment.) In any case, a closed type colony should support at least half again as many people as an open type.

Population figures are few and far between throughout the Gundam Saga. Six and a half million people had to be evacuated from Mahal, a closed type colony in Side 3, so that the colony could be converted into the Solar Ray System in UC 0079. Three million colonists were killed in Bunch 30, an open type colony in Side 1, when it was nerve-gassed by the Titans in UC 0085. Eight million people were killed in Bunch 21, an open type colony in Side 2, when it was blown apart by the Colony Laser in UC 0087.

Five million people lived in Londinium, an open type colony in Side 1, when it served as the Londo Bell’s homeport in UC 0093. Ten million people lived in Frontier IV, a “60% to 70% completed” open type colony in Side 4, when it was invaded by the Crossbone Vanguard in UC 0123.

The only populations figure that is consistent throughout the Gundam Saga is that, at the start of the One Year War, there were a total of eleven billion people in the Earth Sphere, nine billion of whom lived in space. Of these, it is estimated that a billion lived in subterranean colonies on the Moon. Another billion were scattered among the various asteroid settlements and geosynchronous satellite stations.

The remaining seven billion lived in the six “Sides” orbiting the Lagrange points, one billion per Side except for Side 3, which alone used the newer closed type colonies to support a population of two billion.

If each Side contained a hundred open type colonies, a population density of ten million per colony yields the requisite billion per Side. A hundred closed type colonies with twenty million people each would yield the requisite two billion for Side 3. The highest number of colonies ever given for a Side is eighty-five (Side 2 in UC 0087), but that just tells us that the top end is at least eighty-five.

If eighty-five is actually in the mid-range, the top end could easily be up to 150 colonies per Side, with populations of 6.67 million apiece. Population estimates of three to ten million per open type colony and six to twenty million per closed type colony are therefore most probably correct.

Binary

The issue is further confused by the fact that O’Neill envisioned his colonies being built not as single units but as ballistically coupled pairs, 80 kilometers (50 miles) apart. Was the “population of ten million people” that O’Neill cited the population of both cylinders, yielding five million people per unit, or the population of each cylinder, yielding twenty million per pair?

The former puts 1.67 million people in each valley, with as many as 835,000 in each of the six urban centers, at an urban-to-rural ratio of four to one (80% to 20%). The latter puts 3.34 million people in each valley, with up to 1.67 million in each of the six urban centers, with the same 4:1 urban/rural ratio.

This is not so dense a population as it sounds. By way of comparison, the Manhattan Borough of New York City is an elongated irregular strip twenty kilometers (12½ miles) long and four kilometers (2½ miles) wide. It has a total area of 32½ square kilometers (12½ square miles)—roughly equivalent to one of the three valleys. Central Park is an elongated rectangle four kilometers (2½ miles) long and 800 meters (½ mile) wide, giving it a total area of 3.2 square kilometers (1¼ square miles). As of 2000 AD, Manhattan supported a population of 1,537,195 at an urban-to-rural ratio of 10:1—just under half as dense as the ten-million-per-cylinder scenario described above, but with 2½ times as much urban sprawl.

(On 12 September 2002, Julian H. Fong wrote me to note that, while the Gundam animation and artwork ignore it, there’s an important reason why O’Neill colonies must be ballistically coupled pairs. A single cylinder, rotating independently, is gyroscopically stable but it’ll always point toward the same point in space and thus only faces the Sun once a year. In the O’Neill design, the paired cylinders rotate in opposite directions, so the net angular momentum of the system is zero and the linked cylinders can be made to precess with a one-year period, keeping them aligned with the Sun. Without this precession, and the zero angular momentum necessary to achieve it, the “sunflower” illumination scheme simply won’t work!)

FarmSats

All of the available space within the colony is given over to habitation. Agriculture, as noted above, is external to the colony proper, outside the residential cylinder. Seventy-two “hatbox” cylinders, each 645 meters (2,110 feet) across and 645 meters (2,110 feet) deep, enclosed by a 1.3-kilometer (4,265-foot) parabolic solar energy concentrator, orbit the industrial block at the north end of the colony. Linked into a giant ring by an annular access tube and connected to the end cap by three 32-kilometer (20-mile) radial spokes, they’re called agricultural blocks or farming satellites (“farmsats”). Each contains 1.3 square kilometers (½ square mile) or 129.4 hectares (320 acres) of hydroponics greenhouses, warmed and illuminated by the concentrated sunlight.

Altogether, each colony has 93 square kilometers (36 square miles) or 9,325 hectares (23,040 acres)—the equivalent of an American rural county “township”—of dedicated, arable farmland.

(In the Gundam animation and artwork, the agricultural ring is often shown at the far end of the colony, but this is technically incorrect, as it would result in the farm modules being eclipsed by the mirrors. And, just as the rotation of the colony is either ignored or exaggerated in the animation, the apparent size of the farm satellites is also exaggerated to make them visible next to the colony proper, with the result that their number is reduced to fifty or sixty. More often, a complete ring isn’t even shown. The sketches of the O’Neill colonies often included only a few representative farm satellites instead of a complete set and the Gundam artists slavishly copied these incomplete drawings in their animations and production art.)

It should be noted that the ring does not rotate along with the colony proper. If it did, the farms would be subjected to pseudo-gravity close to five times that of the Earth. Instead, the ring remains fixed and each of the seventy-two agricultural blocks rotates at two RPM to produce Terrestrial gravity at its inner hull.

The colonies run on a 24-hour clock set to the Universal Time Coordinate (Greenwich Mean Time adjusted to the Terrestrial equator), with “sunrise” at 06:00 UTC and “sunset” at 18:00 UTC. Varying the angle and pitch of the external mirrors can simulate day and night cycles and even seasonal changes. Any Terrestrial climate can be simulated, but generally the air temperature is held between 5° to 25° C (40° to 80° F) and averages 15° C (60° F), with a relative humidity of 40% to 60%—the temperate climate that southern California promises but seldom delivers. The ground temperature ranges from 5° to 50° C (40° to 120° F), with ground water temperature falling midway in between at 10° to 40° C (50° to 105° F), averaging 25° C (80° F) for both. The air pressure is equivalent to that at a Terrestrial elevation of 1.6 kilometers (one mile) above sea level, about the same as Denver, Colorado.

Transportation within the colony is by the ubiquitous “elecar” or electric-powered car, which range in size and power from a two-seat “go-cart” to a containerized cargo “mono-wing” truck. Powered by a fuel cell that burns hydrogen and oxygen to produce electricity and water vapor, which can be broken down and recycled almost endlessly, they are clean, quiet and economical.

Airtight “linear cars” traverse the outer hull in a manner analogous to the metro subway, riding on superconducting magnetic-levitation (“maglev”) rails at the colony’s rotational speed of 644 kilometers per hour (400 miles per hour) and admitting a spectacular view. “Linear trams” resembling the cable cars of San Francisco run up and down the end cap mountainsides, connecting the urban centers to the zero-G industrial blocks and bay blocks. They also allow for easy transport between ballistic coupled pairs of colonies, 80 kilometers (50 miles) apart, with a transit time of seven minutes and twenty-seven seconds (00:07:27) each way.


Link Return to Top of Page

Link Back to Mobile Suit Gundam: High Frontier

Last Update: 01 January 2020

Copyright © 1999–present by Dafydd Neal Dyar

 

3 thoughts on ““It’s Life, GM, But Not As We Know It!””

  1. The arcology ecology always fascinates me about these series, and I wish more time was spent giving hints on how they functioned. I can accept unlimited power through high-efficiency solar and He3 fusion as a gimme, but how do you deal with the nitrogen and oxygen cycles when dependency on earth is deliberately minimized or nonexistant?

    Also wondering how much freedom “regular” spacenoids have, given that population and resource consumption is much more acute in a (mostly) closed environment. What happens to material at the dumps that Judau and friends started their adventures in?

    1. Alas, the ecology of the O’Neill cylinder isn’t even adequately addressed in “The High Frontier” much in less Gundam. As I note in “The Weather Will Be Dry … Unless It Rains” no one seems to have considered what must inevitably happen when it rains & the “sky” panels are covered in water. Waterfalls, if allowed at all, won’t fall straight but veer upspin as noted in “Finding a Sense of Direction” & free flowing water, if allowed at all, will find its own level based on Coriolis forces, not gravity. The only gravity is that of the Sun, Earth & Moon & their inevitable tidal effects on open water are never even considered much less addressed as an engineering or mechanical issue.

      The colonies aren’t even truly “cities in space” but rather suburbia rolled up into a tube. Although I liken to a Open Type cylinder to being three parallel Manhattan Islands but they lifestyle is much more akin to Long Island than Manhattan. There’s equal parts parkland & residences & the greenery is manicured. There’s no wildlife & all animals are domesticated pets with the odd horse, sheep, cow, pig or chicken to go with the private garden kept for recreation & rusticity.

      The key point about Gundam colony life is that it’s an artifice simulating an idealized suburbia populated with egalitarian model homes like Disney’s Main Street USA updated to the Fifties Levittown suburban ideal without the inevitable pollution. https://en.wikipedia.org/wiki/Levittown

      The cylinders aren’t & can never be self-sustaining. They’re sterilized & regimented living spaces that create the illusion of a safe & stable environment orbiting the Earth in the vacuum of space. All industry is conducted outside the hull & preferably at as great distance from the habitat proper as is practical & convenient. Agriculture is done in dedicated cylinders populated only by crops, animals & their minders, which are likely as automated as possible.

      To date, arcologies & biodomes remain a science fictional as space habitats & for the same reason: no one has yet created one that actually works. See also Libertarian government & other Utopian societies. They look good on paper but aren’t worth the paper on which they’ve been printed except as the thought experiments or satires the purport to be.

      The cylinders must necessarily with fill with an atmosphere pressured to 1 Bar at the inner circumference that’s 20.95% oxygen but there’s nothing but the blueness of the sky (which may also be artificial) to suggest that the rest of it is 78.08% nitrogen, 0.93% argon, 0.04% carbon dioxide & small amounts of other gases. It could be Helium-3 for all we know, making Minovsky fusion power cheaper than dirt. Given that all the greenery is either potted or artificial, nitrogen fixing won’t be an issue so long a photosynthesis production of oxygen matches CO² exhalation to keep both animal & plant life equally happy.

      Given that everything is electrically powered using pollution-free fusion, solar & hydrogen combustion, the carbon footprint should be a near zero as humanly possible & regulated down to the parts per million.

      My understanding is that the Shangri-La Junk Guild are essentially piss-poor recyclers of damaged manufactured goods one step removed from beachcombers & scavengers back on Earth. What sits in the dumps stays in the dumps until someone figures out how to make it marketable to someone or otherwise finds a recreational, personal or professional use for it.

      Even when “The High Frontier” was first published, it was deemed “Pie in Sky in the Sweet Bye & Bye” & O’Neill himself pushed the concept a justification for giant orbiting solar power satellites to microwave electrical power to Earth from cislunar space.

      Building castles in the air is one thing. Moving into them & paying the rent & cost of living is another. SO far, we haven’t built any castles in the air yet, much less beyond the atmosphere & even the ISS costs way more to resupply than most think.
      https://en.wikipedia.org/wiki/Commercial_Resupply_Services

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Until We Come Up With Something Witty To Say…